
As an example we provide in Fig. 5 the dependences of m' on ~ , obtained during the 
numerical solution of (3.13), for the following initial conditions: t' = 0, ~ = 0.1, m' = 
--i; --0.5; 0 (lines 1-3). The calculations were performed for B = i0 -~ for a plate with 
D/L = i, corresponding to A = 0.132"10 -~, B2 = --0.274-10-". For the same values of the 
original parameters we derived, with account of (3.16), the boundary (curve 4) of the region 
of and ~' values, in achieving which the plate is "buoyant" on the hydrofoil. The 
primed portions of curves 1-3, though formally corresponding to Eq. (3.13), cannot be real- 
ized. This is due to the fact that the plate behavior following the moments of "buoyancy" 
corresponding to the intersection points of lines 1-3 and 4 are no longer described by Eq. 
(3.13). 

The results obtained in the examples considered for the simplest special case, when in 
(I.i0) attention is restricted to the first equation only for each of the two ~(J = i), are, 
naturally, of approximate nature. Nevertheless, it is possible to find preliminary estimates 
of flow characteristics. However, when higher accuracy is required, it is suggested to use 
in (I.i0) a larger number of equations (J~.2). 
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PLANAR SURFACE WAVE GENERATION IN THE 

PRESENCE OF SLIGHT BOTTOM ROUGHNESS 

B. E. Protopopov and I. V. Sturova UDC 532.591 

At present a linear theory of surface wave generation by various perturbations in a 
liquid with horizontal bottom has been developed quite well. However in the case of a 
liquid with rough bottom analytical studies of this problem have met with severe mathemati- 
cal difficulties. The perturbation method is usually used for slight bottom roughness [i]. 

Using a linear formulation, the present study will investigate the effect of slight 
localized bottom roughness on the behavior of surface waves for two problems: decay of an 
initial elevation of the free surface and motion of a surface pressure region. A comparison 
is performed with a numerical solution of the original problem, obtained by the finite dif- 
ference method. 

i. Let an ideal incompressible homogeneous liquid occupy the region --~ < x < ~, 
-H(x)~y~O, where x is the horizontal, and y, the vertical coordinate, H(x) = Ho -- 
h(x), h(x) § 0 as Ixl § ~. At the initial moment t = 0 the free liquid surface is displaced 
from its equilibrium horizontal form and the expression y = fo(x) is specified. The velo- 
city potential of the given flow ~(x,y, t) satisfies the equation ~ 
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with boundary conditions 

and initial conditions 

With the assumption that h m 

A~ = 0 ( l . l )  

q)tt J[" g(~Y : 0 for y : O; (i. 2) 

CPV = h,gx for g = --H(x); (1.3) 

191 < oo for Ixl-+ oo (1.4) 

q) : O, 9, "--- --g/o(x)  for- t : 0. 

<< Ho (h m = maxlh [), in analogy to 

(1.5) 

[i] the boundary condi- 
tion on the bottom can be llnearized, and the solution of Eqs. (1.1)-(1.5) can be sought in 
the form 

= ~0 + 91 + ~ + ... (1.6) 

The functions q0 i (i = 0, i, 2 .... ) then satisfy Eq. (i.i) and boundary conditions (1.2), 
(1.4). The boundary condition on the bottom, Eq. (1.3), is transferred to the line y = --Ho: 

9oy = O, T,v = A ( x ,  t) for  y ---- - - I I  o ( 1 . 7 )  

(A (x, t) = h~%x-- h%~). 

In order to find ~ a recursive sequence of boundary problems can be derived. Further 
analysis will be limited to the first approximation only. We write the initial conditions 
of Eq. (1.5) as 9oa : O, 9or-----g]o(x), ~&, =0 at t = 0. We assume that the functions 
fo(x) and h(x) admit a Fourier transform and (for simplicity) that they are even. 

l~]e function ~00 describes the well-known solution of this problem for a liquid with 
smooth bottom: 

oo 

90 (x, y, t) --  1 /~g  [ Fo (k) cos kx cosh k (V + Ho) s in  cot dk 
g v  

o V~k ii~ 2kuo (1.8) 

The v e r t i c a l  d i s p l a c e m e n t  o f  t h e  f r e e  s u r f a c e  n ( x ,  t )  i s  d e f i n e d  by  t h e  e x p r e s s i o n  n = 
- - ( t /g)~0t ly=o,  and  a c c o r d i n g  t o  Eq.  ( 1 . 6 ) ,  

q = *], t -  Th. (1.9) 
oo 

I 
j F o (k) cos k x  cos cot dlr. H e r e  t h e  f i r s t  t e r m  i s  e q u a l  t o  1]0(x , t ) = ~  

0 
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To calculate the function 
ding to Eqs. (1.7), (1.8) 

oo 

;t d V s~nh 2kH o 
0 

and the solution for n~ in Eq. (1.9) has the form 

oo oo 

2g C ~ cos ~.x dg ~ kF. (k) [cos m (D t - -  cos e (k) t l  

"q, (x, t) ---:- --~,)cosh ~H o coshkHolto=(k ) ~ ( ~ ) ]  
O 0 

( ; ) K ( ~ , k ) =  h(x) s i n k x s i n ~ x d x  . 
0 

I n  a l i q u i d  l a y e r  o f  f i n i t e  w i d t h  Izl ~< L w i t h  b o u n d a r y  c o n d i t i o n s  

(p==O at I x l = L  

f r o m  t h e  s o l u t i o n  o f  E q s .  ( 1 . 1 ) - ( 1 . 3 ) ,  ( 1 . 5 )  i n  t h e  a p p r o x i m a t i o n  o f  Eq.  

w h e r e  fi = =/L; to m = ~/ gn~I tanhn~Ho; 

~ we use Fourier and Laplace integral transforms. Accor- 

g (r k) dk 

(1.10) 

(1.6) we find 

a t  n :/= m, 

at n ----- m, 

(1.11) 

(1.12) 

L 

b. -= 2 y ]o(X)COSt~xdx; Mnm 
0 

= K (mi~, n~). 

2. In our study of wave motions produced by the effect of an external pressure pu(x,t) 
applied to the free liquid surface we will maintain the notation of Sec. I. The velocity 
potential of the flow to be considered satisfies Eq. (i.i) with boundary conditions (1.3), 
(1.4). We now write the boundary condition on the free surface in the form 

%t ~" g~y = --Pat/P at y = 0 (2.1) 
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(where p is the liquid density). We assume that at the initial moment perturbations are 
absent from the liquid, and the initial conditions are 

(p = O, ~t = --Pa/f l  a t  t = 0. ( 2 . 2 )  

The elevation of the free surface is determined from the expression n = --(r § paip)Ig. 
It is assumed that the surface pressure moves uniformly at a velocity c in the direction of 
the positive x-axis, which velocity is constant within the interval Ix-- cII<~l and zero 
elsewhere, i.e., 

pa/p  = P a t  Ix - -  ctl <~ l, ( 2 . 3 )  

Pa --- 0 a t  Ix - -  ctl > I. 

In the approximation of slight bottom roughness the solution of the given problem may 

be sought in the form of Eq. (1.6), but in contrast to Sec. 1 the boundary condition on 
the free surface and the initial condition for the function (p0 have the form 

~ott q- g(Pou "= - -Pat /P  a t  y = O, (Pot = - -Pa/P  a t  t = 0. 

All remaining conditions are the same. The solution of this problem is then: 

% (x, y, t) = t {"/.(k) cosh  a (.~ + no) {kc [sin k.r. cos cot - -  s i n  k (z  - -  et)] - -  oJ cos k x  s in  o)t} dk; ( 2 . 4 )  
n" J cosh  kHo ((02 __ k2c ~) 

0 

oo 

�9 % (x, t) = t__ ~" f (a__~) cod___k_k {r [cos k (x - -  ct) - -  cos cot cos  kxl  - -  kc s i n  (ot s in  kz};  ( 2 . 5 )  
ag J kZc 2 _ (02 

0 

oo oo { k2c 2 (F 1 sin kct - -  F 2 COS kct) I 
! {' ~d~, ~" k!  (k) da B ( ~  (k)) - -  B (a) (~)) + [cou (k) - -  k2c2][(02 (~) - -  k2c2]}" r h (x, t) = . ~  J c o s h  ~H o J c o s h  kHo ( 2 . 6 )  

0 0 

Here 
/ (k)  - -  2 P  s in  kl /k;  f l(k,  ~, z )  = G,(k ,  ~) cos  Sz  - -  G2(k, 

F, (k ,  ~, x) = G:,(k, ~)cos ~x -- Gl(~, k) s in  ~x; 

G l (k, ~) - S tt (x) s in  ~x cos k x  dx; 

G s (k, ~) - i h (x) s in  ~x s in  k x  dx;  

~) s in  ~x; 

o o  

G 2 (k, ~) = ,[ h (x) cos  ~x cos  kx  d.r; 
- - o o  

(0 (kcF 1 sin cot -- coF 2 cos cot) 
B (~) ---- (k~ ,  ~ _ cJ) [co ~ (~) --  co~ (k)]" 

It is interesting that in the approximation considered the effect of a varying bottom 
manifests itself in the following manner: in addition to wave motions produced in a liquid 
with a smooth bottom by the wave generator considered (initial perturbation of the free sur- 
face or a moving surface pressure region), other wave perturbations appear due to oscilla- 
tion of a portion of the bottom corresponding to the size of the bottom roughness. These 
bottom oscillations "switch on" simultaneously with the initial generator, and their ver- 
tical velocity component can be described by a function A(x, t) which can be represented 
in the form A = (hZ)x, where 
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oo 

t f k/(k} dk {kc [cos k (z  - -  ct) - -  cos kx  cos cot] - -  (o s i n  o~t s i n  kx}. ( 2 . 7 )  Z ( x , t )  "E "--" ~ 
= J c o s h k g  o(k c - to2) 

0 

An important characteristic of this flow is the wave resistance W experienced by a mov- 
ing pressure region. With consideration of Eq. (2.3) 

W (t) = ~ p~ (x, t) ~lx dx  = p P  [~1 (ct + l, t) - -  q (ct - -  I, t)]. ( 2 . 8 )  

For a liquid with a smooth bottom, according to Eq. (2.5), 
co 

Wo( t )  = 2PP2 j ~ [" sin(a)--kc)tr -- kc sin (to--~ + kckc)t] dk" 

0 

An asymptotic evaluation of this expression at t § ~ yields a solution of the corresponding 
steady state problem, as presented, for example, in [2]. No ~ 4pP2sin ~ knl/g(1 --gHo/c 2cosh2koHo) 
(where ko is the root of the equation c2k = g tanhkH0). The presence of slight roughness 
introduces into W in addition to Wo a term W, dependent on the behavior of the function ~, 
in Eq. (2.6)" 

oo ~ [ k'c 2 (E cos kct -- E~ sin kct) 1 
W, = -~-2t~P J ~'osh {' ~ sin~llo~l d~ Z c~ kllo~~ IC (co (k)) -- C (e (~)) -i- [e2 (#) _ k"c'] [~' (D -- k2cSlJ " (2 .9) 

0 0 

(toEtcos ~t -- kcE~ sin tot) 
where C (w) = (/t%. z _ .,) [~2 (~) _ ~z (k)] ; 

E l ( k ,  ~, t) = G.j(k, ~) s in  ~ct § G,(k, ~) cos ~ct; 
E~ (k, ~, t) = G~(k, ~) s in  ~ct + G~(k, ~) cos ~ct. 

For a liquid layer of finite width ]xI<~L the solution for motion of the surface 
pressure region Pa/P = P at Ix +x 0-ctl~l , Pa = 0 at Ix + x 0 - ct I > s with consideration of 
boundary condition (1.12) has the form 

t~o 

2P ~1  T ,  cos n~i (x 4- L); "qo = 

~11 - ~ ]  N, , ,  cos  m ~  (• + L). 
r a m l  

(2.1o) 

( 2 . 1 1 )  

Here 

it'll 

w n sin n~l 
Tn ---- n ((o~n -- nS~l'c ~) [(tin cos hi3 (x o - -  L) (cos or,~t - -  cos n ~ t )  + 

+ s in  nil  (z o - -  L) (nile s i n  ~,,t - -  o~ s i n  nf~ct)]; 

~ 2 9 2 9 2 ~ '~ L' ~o~ ~Mo ~.h.~H o [ (~) - G <,o.) + (. ~c - ~.) (to.- n t~ )J 
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L 

B,m = ~ It (x) sin n~ (z + L) sin m~ (x + L) dx; 
--L 

[n~r sin ,t~ (z o - -  L)sin cot + ~oeos ng (z o - - / . ) cos  ot  1 
c (.0 = (~  _ ~ c ~ )  ( ~ _  ~) 

The  w a v e  r e s i s t a n c e  i n  t h e  g i v e n  p r o b l e m  ( a c c o r d i n g  t o  E q s .  ( 2 . 8 ) ,  ( 2 . 1 0 ) ,  ( 2 . 1 1 ) )  W = Wo + 

W 1, w h e r e  

W o - 40P---~2 ~ T~ sin n i l .  sin n t (x o --  ct - -  L), 
ag 

T I - - 1  

W~ = 2gP ~ Nr~ sin mil l . s in  mg (~o - -  ct - -  L). 

I n  a d d i t i o n  t o  t h e s e  f l o w  c h a r a c t e r i s t i c s  we w i l l  a l s o  c o n s i d e r  t h e  b e h a v i o r  o f  p r e s s u r e  
on  t h e  b o t t o m ,  w h i c h  c a n  b e  d e t e r m i n e d  b y  t h e  e x p r e s s i o n  D = p - ~ p J u . _ , o = - - q ' t [ ~ = - , o .  F o r  a 

l i q u i d  w i t h  a s m o o t h  b o t t o m  

Do ip 2 . ~ R .  cos ng (z + L), = ~ - + ~  

sin nfil [C02n COS toni cos n~ (x 0 - -  L) - -  
Rn = n eosh n~n 0 ( r -- n'~2c ~) 

- -  n~-c  ~- cos n[~ (x o --  L --  ct) + nic(o, sin ~ t  s in  n~ (x o - -  L)]. 

I n  t h e  a p p r o x i m a t i o n  o f  s l i g h t  r o u g h n e s s ,  t o  t h e  t e r m  Do we add  

oo  

D , =  ~ V ~ c o s m l ( x +  L). ( 2 . 1 2 )  
m = !  

o o  , 

- ( g " i  - o,,, t ~  (,o~) - a (~0=)1 + V,,, ~__ Z.,cosh,,l~ll ~ 
n = l  t 

n2~"-c s (n~ 2 tanh ,,,~II . -- gnt~J I 
+ ,, 2 2 ~ ., 2 ~ ~ COS n15 (:r o - -  L - -  ct)j. 

( ~ , , - , , ~  ) ( o , . o - - , , ~  ) 

The effect of bottom roughness on a steady state wave train is also of significant 
interest. In this case the solutions for (p,~z, t) and no(X, t) are equal to the underlined 
terms in Eqs. (2.4), (2.5) and in a moving coordinate system x. = x -- ct they describe wave 
perturbations produced by a constantly acting pressure applied to the free surface of a uni- 
form flow. The solution of this problem is well known (see, e.g., [3]). The value of the 
function Z(x, t) is defined by the underlined terms in Eq. (2.7). According to [3], at c > 
/gHo the function Z(x.) is even with respect to x. and decays exponentially with removal 
from the external pressure region. For c < #gHo together with this term there appears a 
second one which is nonzero only for x. < 0 and represents a periodic wave. The rate of 
decay of the function Z(x.) with removal from the pressure region for x. > 0 permits deter- 
mination of the minimum distance from the bottom roughness at which the latter ceases to 
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have a significant effect. Beginning at those times when the surface pressure falls within 
the roughness zone the bottom excitation function A(x, t) becomes periodic in time, and the 
problem under study has much in common with the problem of wave generation by periodic bot- 
tom movements. In this case the solution for r t) has the form 

oo oo 

~, = ~ .  ,:o.h k . H ~ - - - - , o  ~' (~,)] ,:osh roll, i , , :  (~,) - -  ,r X 
t~ 

{ i } X [co2(g)sinh~y + g~cosht .gl  F ,  coso)(g) t  + kcF2 oJ(g) ] --(k~c~ sintt gg + g~ coshgg ) (F l coskc t  + F2s inkc t  ) . 

3. An algorithm for numerical solution of the problems considered above can be con- 
structed on the basis of the finite difference method for a finite width liquid layer. We 
use the replacement of variables x' = x, y' = --y/H(x), which transforms the flow region 
Q-- {Ixl~L, --H(x)~y~<.O} into a rectangle II={[x'l~L, 0~g'~l}. As a result of 
this replacement Eq. (i. i) and boundary conditions (i. 2), (i. 3), 
form (here and below we omit the primes on the new variables) 

u~ + vy = O; 

u = O  a t  I x l = L , v = O  a t  g = l ;  

"qt -= -v, ~t = - -gq  - Pa/P at g = O; 

u = ('rx + f iv) /v ,  v = (q~, + f~u)/It(:r), 

P := - - y H x ,  ? = (I -" fi~)/H(x). 

(i.12), (2.1) take on the 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Initial conditions (1.5), (2.2) remain as before. After writing evolutionary equations 
(3.3) in discrete form using the Crank~Nicholson method [4] the problems of finding ~ and 
q are easily separated (within the limits of a single step in time). From Eqs. (3.1), (3.2), 
(3.4) and the boundary condition 

- -g~ iv /4  = a at. y = 0 (3.5) 

we calculate ~ , u, v, after which direct computation using q = --Tv/2 + b at y = 0 yields 
the position of the free surface. Here ~ is the step in time, and a and b denote all terms 
known from the previous time step (or from initial data) and the specified function Pa(X, t): 

a "4,  = ~ q.. gT=v~/4 - -  ~ [gn" + ( p : + '  + p~) /2p] ,  b "+ '  = , ?  - -  ~v~/2 

(with superscript denoting the number of the step in t). The problem of Eqs. (3.1), (3.2), 
(3.4), (3.5) can be calculated by an iterative splitting technique constructed using the 
principle of the stabilizing correction method [5] with consideration of the divergent form 
of Eq. (3.1): 

( , r  - ~ ) / , , ,  -- ux~ + ,,,,~+'P', ,,~+'/~ = (,~,+'/~ + puDIu (~), 
~+11,,__g~,vk+ll~/4=a at y~0, ph+112=0 at y=i; 

( ,?+ '  - ~ + ' ~ 9 / , , ,  = u~ +'  - "~, " ' + '  = ( d  + '  + P ' + " q / ' ~ ,  

u k + l = 0  at  IxI=L 
( w h e r e  ~ i s  t h e  i t e r a t i o n  p a r a m e t e r  and  t h e  s u p e r s c r i p t  i s  t h e  number  o f  t h e  i t e r a t i o n ) .  
The t e c h n i q u e  c a n  b e  r e a l i z e d  on a " c h e s s b o a r d "  g r i d  w i t h  n o d e s  ~ l o c a t e d  a t  t h e  c e n t e r s  
o f  t h e  g r i d  c e l l s ,  n o d e s  u a t  t h e  m i d p o i n t s  o f  t h e  s i d e  f a c e s ,  and  n o d e s  v a t  t h e  m i d p o i n t s  
o f  t h e  u p p e r  and  l o w e r  f a c e s .  On ly  s y m m e t r i c  d i f f e r e n c e s  a r e  u s e d  t o  a p p r o x i m a t e  t h e  d e r i v a -  
t i v e s .  The t e c h n i q u e  d e v e l o p e d  h a s  s e c o n d  o r d e r  a p p r o x i m a t i o n  f o r  a l l  v a r i a b l e s  and  i s  a b s o -  
l u t e l y  s t a b l e  a n d  c o n s e r v a t i v e .  

4 .  F o r  c o n c r e t e  c a l c u l a t i o n s  o f  t h e  p r o b l e m  c o n s i d e r e d  i n  S e c .  1 we w i l l  s p e c i f y  
t h e  b o t t o m  r o u g h n e s s  s h a p e  i n  t h e  f o r m  h ( x )  = a c o s ( ~ x / 2 x x )  f o r  I x l ~ x x ,  h ( x )  = 0 f o r  
Ix l  > x~ .  C a s e s  o f  b o t h  f i n i t e  and  i n f i n i t e  l i q u i d  l a y e r  w i d t h  w e r e  c o n s i d e r e d .  A c o m p a r i -  

s o n  w i t h  n u m e r i c a l  c a l c u l a t i o n s  o f  t h e  g i v e n  p r o b l e m  b y  t h e  f i n i t e  d ~ f f e r e n c e  m e t h o d  
d e s c r i b e d  i n  S e c .  3 was c a r r i e d  o u t  f o r  a l i q u i d  l a y e r  o f  f i n i t e  w i d t h  L / ~ o  = 4 f o r  an  i n i -  
t i a l  e l e v a t i o n  o f  t h e  f r e e  s u r f a c e  f o ( x )  = a [ c o s ( v x / 2 r o )  - -  e l  a t  Ix l  < x o ,  f o ( x )  = - - a e  f o r  
I x ~ x o ( e  = 2 x o / ~ L ) .  The n u m e r i c a l  s o l u t i o n  was  o b t a i n e d  on a 72 x 12 g r i d  w i t h  t i m e  s t e p  
TCg/Ho = 0.02. 
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Figure i shows the quantity n for times t g/~7~o = 30 at xo/Ho = i, x~/Ho = 2, a/l{o = 0.2 
(a); xl/Ho = 3, a/Ho = 0.2 (b); xl/Ho = 3, ~/Ho = 0.3 (c). Curves 1-3 represent the numeri- 
cal solution, the solution of Eq. (l.ll) for a smooth bottom, and the approximate solution 
of Eq. (1.9) for slight roughness, obtained with use of Eqs. (l.ll), (i.12). It is obvious 
that the approximate solution coincides with the numerical one only for a/Ho ~ 0.2. It 
should be noted that in the presence of vertical walls reflections cause the effect of bot- 
tom roughness to be significantly more intense than in an unbounded liquid. 

To perform calculations of the problem considered in Sec. 2 two types of bottom 
roughness were used: 

h(z) := a cos(n(x - -  z,)/2x2) fo r  Ix - -  xt l  ~< x2, ( 4 . 1 >  

h(z)=O for I z - - z ~ l > x 2 ;  

h(x) = a sin (a(xl  - -  x)/x~) f o r  IX - -  Xll ~ X2, 

h(x) = 0 fo r  I x - - x l l >  ~ .  ( 4 . 2 )  

Comparison with a numerical solution was carried out for the roughness of Eq. (4.1) for 
L/Ho = 6, ~/Ho = 0.25, xo/Ho = 5, c/~gHo = 0.8, xl = O, x2/Ho = 3. Figure 2 shows vertical 
displacements of the free surface at times t~g/Ho = i0 for a/Ho = 0.2 (a), a/Ho = 0.3 (b), 
a/Ho = 0.5 (c). The numerical calculations were performed on a I00 x i0 grid with a time 
step T g/~7~o = 0.02. Curves 1-3 are analogous to Fig. i, with the rectangle being the posi- 
tion of the pressure region at the given time. The behavior of the function n~ found from 
Eq. (2.11) at t~g/Ho = I0, is shown in Fig. 3, where curve i corresponds to the roughness 
of Eq. (4.1) with parameters of Fig. 2, curve 2 is the same, but for L/Ho = 20, and curve 3 
is the roughness of Eq. (4.2) (L/IIo = 20, xl/Ho = 3, x=/Ho = 6, other parameters the same). 
The behavior of the function n~ for L/Ho = 20 at the given time practically coincides with 
the case of the unbounded liquid. It is evident that change in the width of the liquid 
layer and roughness shape affect the behavior of the free surface only insignificantly. How- 
ever the behavior of pressure on the bottom differs greatly in these cases. 

Figure 4 shows values of D~ calculated with Eq. (2.12). Curves 1-3 are analogous to 
Fig. 3, while curve 4 corresponds to the roughness of Eq. (4.1) located to the left of the 
initial position of the pressure region (L/Ho = 20, x~/} to  = --9, x2/Ho = 3, other parame- 
ters as before). It is evident that the bottom roughness causes significant perturbations 
of the pressure, while under the given conditions changes in vertical displacements are 
negligibly small (the maximum values of IntlgHo/aP < 0.01). This is true because instan- 
taneous propulsion of the pressure region causes perturbations described by the functions 
Z(x, t) in Eq. (2.7~ propagating in both positive and negative x-directions. 

The effect of bottom roughness on wave resistance is shown in Fig. 5, which shows the 
functions W~ for an infinite liquid, as defined by Eq. (2.9). Curves 1-3 correspond to 
roughness of the form of Eq. (4.1) with parameters used in Fig. 3, and various rates of 
motion of the pressure region: c/#gHo e 0.4; 0.6; 0.8. Line 4 is for the roughness of 
Eq. (4.2) with the same parameters used for curve 3 of Fig. 3 (c/JgHo = 0.8). It is evident 
that the presence of bottom roughness changes wave resistance not only for times correspon- 
ding to passage of the pressure region above the roughness, but also at significantly later 
times. The function W, is then a damped wave, the period of which is determined solely by 
the rate of motion of the pressure region. 
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2. 
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